Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.842
Filtrar
1.
Toxicol In Vitro ; 92: 105664, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597759

RESUMO

Ponatinib is an efficient oral tyrosine kinase inhibitor (TKI) for T315I-positive Ph + ALL and T315I-positive chronic myeloid leukemia (CML) or BCR-ABL when no other TKIs can be prescribed. In this research, we evaluated the inhibitory effects of ponatinib on human recombinant UDP-glucuronosyltransferases (UGTs) and predicted the magnitude of potential drug-drug interaction (DDI) risk of co-treatment with ponatinib and UGTs substrates by using in vitro-in vivo extrapolation (IVIVE) method. Our study presented that ponatinib showed a broad-spectrum inhibition against UGTs. Particularly, ponatinib exhibited potent inhibitory effects towards UGT1A7, UGT1A1, and UGT1A9 with IC50 values of 0.37, 0.41, and 0.89 µM, respectively, which might lead to clinically significant DDI.


Assuntos
Glucuronosiltransferase , Imidazóis , Humanos , Interações Medicamentosas , Imidazóis/toxicidade , Difosfato de Uridina
2.
Ecotoxicology ; 32(6): 699-710, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37378816

RESUMO

With the increasing use and production of "green solvents" ionic liquids (ILs) and their known stability in the environment, the potential adverse effects of ILs have become a focus of research. In the present study, acute, chronic, and intergenerational toxic effects of an imidazolium-based ionic liquid, 1-decyl-3-methylimidazolium hexafluorophosphate ([Demim]PF6), on Moina macrocopa were investigated following the parental exposure. The results showed that [Demim]PF6 exhibited high toxicity to M. macrocopa, and the long-term exposure significantly inhibited the survivorship, development, and reproduction of the water flea. Furthermore, it is also observed that [Demim]PF6 induced toxic effects in the following generation of M. macrocopa, resulting in the complete cessation of reproduction in the first offspring generation, and the growth of the organisms was also significantly affected. These findings provided a novel insight into the intergenerational toxicity induced by ILs to crustaceans and suggested that these compounds pose potential risks to the aquatic ecosystem.


Assuntos
Cladóceros , Líquidos Iônicos , Animais , Ecossistema , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade
3.
PLoS One ; 18(5): e0285167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37134100

RESUMO

Pollinator health risks from long-lasting neonicotinoid insecticides like imidacloprid has primarily focused on commercially managed, cavity-nesting bees in the genera Apis, Bombus, and Osmia. We expand these assessments to include 12 species of native and non-native crop pollinators of differing levels of body size, sociality, and floral specialization. Bees were collected throughout 2016 and 2017 from flowering blueberry, squash, pumpkin, sunflower and okra in south Mississippi, USA. Within 30-60 minutes of capture, bees were installed in bioassay cages made from transparent plastic cups and dark amber jars. Bees were fed via dental wicks saturated with 27% (1.25 M) sugar syrup containing a realistic range of sublethal concentrations of imidacloprid (0, 5, 20, or 100 ppb) that are often found in nectar. Bees displayed no visible tremors or convulsions except for a small sweat bee, Halictus ligatus, and only at 100ppb syrup. Imidacloprid shortened the captive longevities of the solitary bees. Tolerant bee species lived ~10 to 12 days in the bioassays and included two social and one solitary species: Halictus ligatus, Apis mellifera and Ptilothrix bombiformis (rose mallow bees), respectively. No other bee species tolerated imidacloprid as well as honey bees did, which exhibited no appreciable mortality and only modest paralysis across concentration. In contrast, native bees either lived shorter lives, experienced longer paralysis, or endured both. Overall, longevity decreased with concentration linearly for social bees and non-linearly for solitary species. The percentage of a bee's captive lifespan spent paralyzed increased logarithmically with concentration for all species, although bumble bees suffered longest. Of greatest concern was comparable debilitation of agriculturally valuable solitary bees at both low and high sublethal rates of imidacloprid.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Imidazóis/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
4.
Toxicol In Vitro ; 91: 105614, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37187212

RESUMO

Some weakly basic compounds lead to cell death accompanied by cellular vacuolation. The novel analgesic agent, 4-dimethylamino-1-{3-(1-methyl-1H-imidazole-2-yl)propanoyl}piperidine (DMIP), is a hydrophilic and weakly basic compound that induces vacuolation in the vascular smooth muscle cells in dogs. Here, we investigated the vacuolation mechanism and the potential cytotoxicity of DMIP using human aortic vascular smooth muscle cells. When cells were treated with DMIP (0.1, 0.3, and 1 mM) for 6, 24, and 48 h, clear cytoplasmic vacuolation was observed at 1 mM after 24 and 48 h, along with an increase in the intracellular DMIP concentration. The vacuolation and intracellular DMIP were markedly reduced by bafilomycin A1, a vacuolar H+-ATPase inhibitor. The late endosome marker Rab7 and lysosome marker LAMP-2 were highly expressed but the early endosome marker Rab5 and autophagosome marker LC3 were not expressed specifically on the vacuolar membranes. These results suggested that the most vacuoles were enlarged late endosomes/lysosomes, resulting from the accumulation of DMIP by ion trapping. Moreover, DMIP did not affect lysosomal membrane integrity and was less cytotoxic than chloroquine, an inducer of phospholipidosis. The current study provides further insight into the mechanisms of vacuolation and lysosomal trapping induced by the hydrophilic and weakly basic amine DMIP.


Assuntos
Aminas , ATPases Vacuolares Próton-Translocadoras , Humanos , Animais , Cães , Músculo Liso Vascular/metabolismo , Vacúolos , Imidazóis/toxicidade , Lisossomos/metabolismo , Piperidinas
5.
Sci Rep ; 13(1): 8537, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237012

RESUMO

Dung beetles (Coleoptera: Scarabaeinae) frequently traverse agricultural matrices in search of ephemeral dung resources and spend extended periods of time burrowing in soil. Neonicotinoids are among the most heavily applied and widely detected insecticides used in conventional agriculture with formulated products designed for row crop and livestock pest suppression. Here, we determined the comparative toxicity of two neonicotinoids (imidacloprid and thiamethoxam) on dung beetles, Canthon spp., under two exposure profiles: direct topical application (acute) and sustained contact with treated-soil (chronic). Imidacloprid was significantly more toxic than thiamethoxam under each exposure scenario. Topical application LD50 values (95% CI) for imidacloprid and thiamethoxam were 19.1 (14.5-25.3) and 378.9 (200.3-716.5) ng/beetle, respectively. After the 10-day soil exposure, the measured percent mortality in the 3 and 9 µg/kg nominal imidacloprid treatments was 35 ± 7% and 39 ± 6%, respectively. Observed mortality in the 9 µg/kg imidacloprid treatment was significantly greater than the control (p = 0.04); however, the 3 µg/kg imidacloprid dose response may be biologically relevant (p = 0.07). Thiamethoxam treatments had similar mortality as the controls (p > 0.8). Environmentally relevant concentrations of imidacloprid measured in airborne particulate matter and non-target soils pose a potential risk to coprophagous scarabs.


Assuntos
Besouros , Inseticidas , Animais , Inseticidas/toxicidade , Tiametoxam/toxicidade , Oxazinas/toxicidade , Tiazóis/toxicidade , Guanidinas/toxicidade , Imidazóis/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Solo
6.
Sci Total Environ ; 875: 162411, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870498

RESUMO

Ionic liquids (ILs) are widely used in frontier fields because of their highly tunable properties. Although ILs may have adverse effects on organisms, few studies have focused on their effect on earthworm gene expression. Herein we investigated the toxicity mechanism of different ILs towards Eisenia fetida using transcriptomics. Earthworms were exposed to soil containing different concentrations and types of ILs, and behavior, weight, enzymatic activity and transcriptome were analyzed. Earthworms exhibited avoidance behavior towards ILs and growth was inhibited. ILs also affected antioxidant and detoxifying enzymatic activity. These effects were concentration and alkyl chain length-dependent. Analysis of intrasample expression levels and differences in transcriptome expression levels showed good parallelism within groups and large differences between groups. Based on functional classification analysis, we speculate that toxicity mainly occurs through translation and modification of proteins and intracellular transport functions, which affect protein-related binding functions and catalytic activity. KEGG pathway analysis revealed that ILs may damage the digestive system of earthworms, among other possible pathological effects. Transcriptome analysis reveals mechanisms that cannot be observed by conventional toxicity endpoints. This is useful to evaluate the potential environmental adverse effects of the industrial use of ILs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Líquidos Iônicos , Oligoquetos , Poluentes do Solo , Animais , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Oligoquetos/metabolismo , Imidazóis/toxicidade , Antioxidantes/metabolismo , Solo/química , Poluentes do Solo/metabolismo
7.
Toxicol In Vitro ; 88: 105550, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36603777

RESUMO

The methylimidazolium ionic liquid M8OI was recently found to be present in both the environment and man. In this study, M8OI disposition and toxicity were examined in an established rat progenitor-hepatocyte model. The progenitor B-13 cell was approx. 13 fold more sensitive to the toxic effects of M8OI than the hepatocyte B-13/H cell. However, this difference in sensitivity was not associated with a difference in metabolic capacities. M8OI toxicity was significantly decreased in a dose-dependent manner by co-addition of the OCT1 (SLC22A1) inhibitor clonidine, but not by OCT2 or OCT3 inhibitors in B-13 cells. M8OI toxicity was also dose-dependently increased by the co-addition of p-glycoprotein-1 (ABCB1B, multi drug resistant protein 1 (MDR1)) substrates/inhibitors. Excretion of B-13-loaded fluorophore Hoechst 33342 was also inhibited by the p-glycoproteins substrate cyclosporin A and by M8OI in a dose-dependent manner. Comparing levels of OCT and p-glycoprotein transcripts and proteins in B-13 and B-13/H cells suggest that the lower sensitivity to M8OI in B-13/H cells is predominantly associated with their higher expression of p-glycoprotein-1. These data together therefore suggest that a determinant in M8OI toxicity in rats is the expression and activity of the p-glycoprotein-1 transporter.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas da Membrana Plasmática de Transporte de Catecolaminas , Imidazóis , Animais , Ratos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Hepatócitos , Imidazóis/toxicidade , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo
8.
Sci Total Environ ; 863: 160958, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36535467

RESUMO

Ionic liquids (ILs) are emergent pollutants and their reproductive toxicities show hormesis, earning attentions on their environmental risk. Yet, their reproductive effects over generations and the mechanisms were seldom explored. In the present study, the reproductive effects of 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2mim]PF6) on Caenorhabditis elegans were measured in 11 continuously exposed generations (F1 to F11) to explore the multi-generational effects, and also in the non-exposed generations of F1 and F11 (i.e., their great-grand-daughters, T4 and T4') to explore the trans-generational effects. In multi-generational reproductive effects, there were concentration-dependent hormetic effects with hazard-benefit alteration between low and high concentrations (e.g., in F3). There were also generation-dependent hormetic effects with hazard-benefit alterations over generations (e.g., between F4 and F5, between F8 and F9, and between F10 and F11). Meanwhile, the results also showed benefit-hazard alteration between F2 and F3, between F6 and F7, and between F9 and F10. Trans-generational effects showed common inhibitions in T4 and T4' at both low and high concentrations. In the biochemical analysis, hormones and hormone-like substances including progesterone (P), estradiol (E2), prostaglandin (PG) and testosterone (T) showed multi- and trans-generational changes with inhibition and stimulation, which contributed to the reproductive outcomes in each generation. Such contribution was also observed in the hormones' precursor cholesterol and the proteins that are essential for reproduction including vitellogenin (Vn) and major sperm protein (MSP). Moreover, the biochemicals showed significant involvement in the connection among generations. Furthermore, the multi- and trans-generational effects of [C2mim]PF6 and histidine showed similar modes of actions despite some differences, implying the contribution of their shared imidazole structure.


Assuntos
Caenorhabditis elegans , Sêmen , Animais , Masculino , Imidazóis/toxicidade , Testosterona/metabolismo , Reprodução
9.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000283

RESUMO

The ongoing decline of bee populations and its impact on food security demands integrating multiple strategies. Sublethal impairments associated with exposure to insecticides, affecting the individual and the colony levels, have led to insecticide moratoria and bans. However, legislation alone is not sufficient and remains a temporary solution to an evolving market of insecticides. Here, we asked whether bees can be prophylactically protected against sublethal cognitive effects of two major neurotoxic insecticides, imidacloprid and fipronil, with different mechanisms of action. We evaluated the protective effect of the prophylactic administration of the flavonoid rutin, a secondary plant metabolite, present in nectar and pollen, and known for its neuroprotective properties. Following controlled or ad libitum administration of rutin, foragers of the North American bumble bee Bombus impatiens received oral administration of the insecticides at sublethal realistic dosages. Learning acquisition, memory retention and decision speed were evaluated using olfactory absolute conditioning of the proboscis extension response. We show that the insecticides primarily impair acquisition but not retention or speed of the conditioned proboscis extension response. We further show that the administration of the flavonoid rutin successfully protects the bees against impairments produced by acute and chronic administration of insecticides. Our results suggest a new avenue for the protection of bees against sublethal cognitive effects of insecticides.


Assuntos
Disfunção Cognitiva , Inseticidas , Animais , Abelhas , Flavonoides , Imidazóis/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos , Pirazóis , Rutina/farmacologia
10.
Environ Toxicol Pharmacol ; 94: 103924, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35787953

RESUMO

Imidacloprid (IMI) is a neonicotinoid insecticide employed worldwide for crop protection. IMI's mode of action occurs through the agonism of postsynaptic nicotinic acetylcholine receptors (nAChRs), with high specificity for insect nAChRs although there are reports of mammals' toxicity. Studies on IMI's neurotoxicity are not conclusive; therefore, the aim of this study was to evaluate the subchronic toxic effects of an IMI based commercial pesticide on rats. Adult male Wistar rats received an IMI suspension via the oral route at doses of 1.5, 5, and 15 mg/kg for 45 consecutive days. IMI caused an increase in rearing and time spent at the periphery in the locomotor activity test and a decrease in time spent to finish the OX maze task (p < 0.05; ANOVA/Bonferroni). In blood, there was a decrease in mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration (p < 0.05; ANOVA/Bonferroni) and an increase in serum butyrylcholinesterase activity (p < 0.001; ANOVA/Bonferroni). Therefore, subchronic administration of an IMI-based-pesticide caused behavioral and systemic impairments in rats.


Assuntos
Inseticidas , Praguicidas , Receptores Nicotínicos , Animais , Butirilcolinesterase , Imidazóis/toxicidade , Inseticidas/toxicidade , Masculino , Mamíferos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/toxicidade , Ratos , Ratos Wistar
11.
Pestic Biochem Physiol ; 184: 105113, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715052

RESUMO

Imazalil (IMZ) is a highly effective fungicide employed in crop production. It has been consistently detected in aquatic environments. The main environmental metabolite of IMZ is imazalil-M (IMZ-M). Limited studies have focused on the toxicity of IMZ and IMZ-M in aquatic organisms. This study systematically evaluated the developmental toxicity of IMZ and IMZ-M on zebrafish (Danio rerio) embryos and explored the potential mechanisms involved. The results showed that IMZ and IMZ-M caused developmental toxicity, characterized by decreased heart rate, hatching inhibition, and pericardial cyst in zebrafish embryos. Subsequently, acridine orange (AO) staining revealed cell apoptosis in the area around the heart regions of zebrafish larvae. Besides, the expression levels of apoptosis-related genes also varied significantly. Furthermore, 1H NMR-based metabolomics analysis showed that IMZ and IMZ-M exposure could induce metabolic profiles disorder in zebrafish larvae. Importantly, zebrafish exposure to IMZ and IMZ-M significantly affected the metabolism of branched - chain amino acids, energy, and ketone bodies, which are related to cell apoptosis. Overall, the toxicity of IMZ and IMZ-M in zebrafish embryos and larvae was characterized, suggesting a theoretical basis for the potential environmental risks of IMZ and its metabolite IMZ-M on non-target organisms.


Assuntos
Doenças Metabólicas , Poluentes Químicos da Água , Animais , Apoptose , Embrião não Mamífero , Imidazóis/toxicidade , Larva , Doenças Metabólicas/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
12.
Environ Toxicol Pharmacol ; 90: 103822, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35101594

RESUMO

The marine habitat and its biodiversity can be impacted by released pharmaceuticals. The short-term (7 days) effect of 3 commonly used drugs - warfarin, dexamethasone and imidazole - on Senegalese sole (Solea senegalensis) juveniles was investigated. Occurrence of hemorrhages, histopathological alterations, antioxidant status, activity of antioxidant enzymes and expression of genes involved in the xenobiotic response (pxr, abcb1 and cyp1a), were evaluated. The results showed a time and drug-dependent effect. Warfarin exposure induced hemorrhages, hepatocyte vacuolar degeneration, and altered the activity of glutathione peroxidase (GPx) and the expression of all the studied genes. Dexamethasone exposure increased liver glycogen content, altered antioxidant status, GPx and superoxide dismutase activities, as well as abcb1 and cyp1a expression. Imidazole induced hepatocyte vacuolar degeneration and ballooning, and altered the antioxidant status and expression of the tested genes. The present work anticipates a deeper impact of pharmaceuticals on the aquatic environment than previously reported, thus underlining the urgent need for an integrated risk assessment.


Assuntos
Dexametasona/toxicidade , Linguados , Imidazóis/toxicidade , Varfarina/toxicidade , Animais , Antioxidantes/análise , Hemorragia/induzido quimicamente , Fígado/efeitos dos fármacos , Medição de Risco , Transcriptoma , Poluentes Químicos da Água/toxicidade
13.
Medicine (Baltimore) ; 101(1): e28485, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029901

RESUMO

RATIONALE: Combined treatment with dabrafenib, a B-RAF inhibitor, and trametinib, a mitogen-activated protein kinase inhibitor, is an effective option for patients with metastatic melanoma. A few cases of acute kidney injury associated with tubulointerstitial nephritis and 1 case of nephrotic syndrome have been reported in patients on this drug combination; however, progressive renal injury has not been reported. In this case study, we report a patient with metastatic melanoma who developed glomerular capillary endothelial toxicity and progressive glomerular sclerosis during combination therapy. PATIENT CONCERN: Our patient was an 80-year-old woman with a history of type 2 diabetes and chronic kidney disease. DIAGNOSIS AND INTERVENTION: She was diagnosed with metastatic melanoma and commenced combination therapy with dabrafenib and trametinib. OUTCOMES: Her renal function progressively deteriorated; by month 20 after treatment commencement, her serum creatinine level had increased from 1.59 to 3.74 mg/dL. The first kidney biopsy revealed marked glomerular and endothelial cell damage. Her medication was stopped, but no improvement was evident. At 5 months after the first biopsy, her serum creatinine level had increased to 5.46 mg/dL; a second kidney biopsy revealed focal segmental glomerular sclerosis and marked tubulointerstitial fibrosis. She was started on hemodialysis. LESSONS: We describe a patient with a metastatic melanoma who developed progressive kidney failure during treatment with dabrafenib and trametinib. The most prominent microscopy findings were glomerular endothelial damage in the initial kidney biopsy and accelerated glomerular sclerosis and tubulointerstitial fibrosis in the follow-up biopsy. We hypothesize that a decreased renal reserve and impairment of kidney repair capacity caused by inhibition of B-RAF, a downstream mediator of vascular endothelial growth factor, may explain the progressive kidney injury.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Imidazóis/toxicidade , Melanoma/tratamento farmacológico , Nefrite Intersticial/induzido quimicamente , Oximas/toxicidade , Piridonas/toxicidade , Pirimidinonas/toxicidade , Neoplasias Cutâneas/tratamento farmacológico , Idoso de 80 Anos ou mais , Creatinina , Diabetes Mellitus Tipo 2 , Feminino , Fibrose , Humanos , Imidazóis/administração & dosagem , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Oximas/administração & dosagem , Oximas/efeitos adversos , Proteínas Proto-Oncogênicas B-raf , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Neoplasias Cutâneas/patologia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
14.
Food Chem ; 373(Pt A): 131398, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710679

RESUMO

The effects of yellow mustard (Brassica juncea) and its characteristic component allyl isothiocyanate (AITC) on the formation of 2-amino-y1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) in roast beef patties and PhIP-producing model systems were investigated. The probable inhibitory pathways of AITC on PhIP formation were also investigated in the model systems. The results revealed that yellow mustard and AITC can reduce PhIP in roast beef patties up to 41.7% and 60.2%, respectively. The rate of inhibition of PhIP also reached 64.8% in the PhIP-producing model systems. Furthermore, AITC could react with creatinine and phenylalanine in the model system (reducing each by 15.0%%-23.7% and 31.4%-55.8%, respectively). AITC showed the great scavenging ability of free radical scavenging (up to 64.2%). AITC also reacted with the intermediate phenylacetaldehyde (16.9%-30.8%) and the final product PhIP (7.0%-24.6%). It is speculated that AITC can inhibit PhIP through competitive inhibition of precursors, blocking intermediate, free radical scavenging, and direct elimination of PhIP.


Assuntos
Imidazóis , Mostardeira , Animais , Bovinos , Imidazóis/toxicidade , Isotiocianatos
15.
Chemosphere ; 286(Pt 1): 131578, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303052

RESUMO

Ionic liquids (ILs) are used as detoxication agents for fermentation of lignin into ethanol because of their good applicability. However, the residual ILs may be toxic to the yeast. In order to improve the use of ILs for fermentation and protected environment, the toxicity of ILs with different carbon chain length to Pichia stipitis was studied in this paper. Four kinds of common imidazolium chloride ILs ([C4mim]Cl, [C6mim]Cl, [C8mim]Cl and [C10mim]Cl) were selected. ILs can inhibit the proliferation of Pichia stipitis and increase their mortality. Oxidative stress reaction occurred in the cells, and the activities of antioxidant enzymes are affected. Comparing with the integrated biomarker response (IBR) index, it was found that the toxicity increases with increasing chain length. ILs may enter cells by damaging cell membranes and reduce ethanol production by damaging organelles such as mitochondria. ILs caused wrinkles and dents on the surface of cells up to cell deformation and even rupture. The toxicity sequence was as follows: [C10mim]Cl> [C8mim]Cl>[C6mim]Cl>[C4mim]Cl. Due to this toxicity to Pichia stipitis, these compounds should be used carefully in the fermentation process and also to avoid toxic effects on other organisms in the environment.


Assuntos
Líquidos Iônicos , Carbono , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Saccharomycetales
16.
Environ Sci Pollut Res Int ; 29(5): 7652-7660, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480310

RESUMO

Ionic liquids are widely used in many fields due to their extremely tunable nature and exceptional properties. The extensive application of ionic liquids raises great concerns regarding their bioaccumulation potential and adverse effects on organisms. Green plants have a great potential for uptake of persistent xenobiotics from aquatic and terrestrial environment. However, the assimilation and bioaccumulation of 1-tetradecyl-3-methylimidazolium bromide ([C14mim]Br) have not been studied in plants yet. In order to explore the phytoaccumulation of [C14mim]+, ryegrass were exposed to [C14mim]Br with hydroponic experiment. The effects of [C14mim]Br dosages on growth index, chlorophyll content, malondialdehyde (MDA) content, and antioxidant enzyme activity of ryegrass were investigated. The toxic effects of [C14mim]Br on ryegrass growth increased with increasing initial concentration. The high initial concentration treatment resulted in rapid changes in physiological characteristics in ryegrass tissue. [C14mim]+ ions were mainly accumulated in root tissue and partly translocated to the above ground part of ryegrass. [C14mim]+ was observed in the highest concentration (314.35 µg/g in root and 101.42 µg/g in aboveground parts of ryegrass) with 10 mg/L of [C14mim]Br. Our results demonstrated that ryegrass can uptake and accumulate [C14mim]+ and is therefore a suitable species for phytoremediation of trace amount of [C14mim]+ and possibly other ionic liquids.


Assuntos
Líquidos Iônicos , Lolium , Biodegradação Ambiental , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade
17.
Sci Rep ; 11(1): 23841, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903784

RESUMO

Exposure to infection in utero predisposes towards psychiatric diseases such as autism, depression and schizophrenia in later life. The mechanisms involved are typically studied by administering mimetics of double-stranded (ds) virus or bacterial infection to pregnant rats or mice. The effect of single-stranded (ss) virus mimetics has been largely ignored, despite evidence linking prenatal ss virus exposure with psychiatric disease. Understanding the effects of gestational ss virus exposure has become even more important with recent events. In this study, in pregnant mice, we compare directly the effects, on the maternal blood, placenta and the embryonic brain, of maternal administration of ds-virus mimetic poly I:C (to activate Toll-like receptor 3, TLR3) and ss-virus mimetic resiquimod (to activate TLR7/8). We find that, 4 h after the administration, both poly I:C and resiquimod elevated the levels of IL-6, TNFα, and chemokines including CCL2 and CCL5, in maternal plasma. Both agents also increased placental mRNA levels of IL-6 and IL-10, but only resiquimod increased placental TNFα mRNA. In foetal brain, poly I:C produced no detectable immune-response-related increases, whereas pronounced increases in cytokine (e.g. Il-6, Tnfα) and chemokine (e.g. Ccl2, Ccl5) expression were observed with maternal resiquimod administration. The data show substantial differences between the effect of maternal exposure to a TLR7/8 activator as compared to a TLR3 activator. There are significant implications for future modelling of diseases where maternal ss virus exposure contributes to environmental disease risk in offspring.


Assuntos
Glicoproteínas de Membrana/imunologia , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/imunologia , Esquizofrenia/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Quimiocinas/metabolismo , Feminino , Imidazóis/toxicidade , Interleucina-6/metabolismo , Masculino , Glicoproteínas de Membrana/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Esquizofrenia/etiologia , Receptor 3 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Fator de Necrose Tumoral alfa/metabolismo
18.
Environ Sci Technol ; 55(22): 15301-15312, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34719228

RESUMO

Zeolitic imidazolate frameworks (ZIFs) have been developed quickly and have attracted considerable attention for use in the detection and removal of various pollutants. Understanding the environmental risks of ZIFs is a prerequisite to their safe application by industry and new chemical registration by governments; however, the persistence and recovery of toxicity induced by ZIFs remain largely unclear. This study finds that typical ZIFs (e.g., ZIF-8 and ZIF-67) at a concentration of 0.01-1 mg/L induce significant algal growth inhibition, plasmolysis, membrane permeability, chloroplast damage, and chlorophyll biosynthesis, and the above alterations are recoverable. Unexpectedly, a persistent decrease in reactive oxygen species (ROS) is observed due to the quenching of hydroxyl free radicals. The adverse effects of ZIF-8 are weak and easily alleviated compared with those of ZIF-67. ZIF-8 is internalized mainly by caveolae-mediated endocytosis, while ZIF-67 is internalized mainly by clathrin-mediated endocytosis. Omics studies reveal that the downregulation of mRNA associated with oxidative phosphorylation and the inhibition of chlorophyll and adenosine triphosphate (ATP) synthesis in mitochondria are related to the persistence of phytotoxicity. These findings highlight the phenomena and mechanisms of the persistence and recovery of phytotoxicity, indicating the need to reconsider the environmental risk assessments of ZIFs.


Assuntos
Imidazóis , Zeolitas , Atenção , Imidazóis/toxicidade , Zeolitas/toxicidade
19.
ChemMedChem ; 16(23): 3600-3614, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34665510

RESUMO

Leishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer. With the aim of discovering new compounds that could serve as anti-trypanosomal drugs, an antiparasitic study of a synthetic compound family has been conducted. A series of new 1,4-bis(alkylamino)- and 1-alkylamino-4-chloroazine and benzoazine derivatives 1-4 containing imidazole rings have been synthesized and identified. Their structures showed a possible interest based on previous work. Their in vitro anti-Leishmania infantum, anti-L. braziliensis, anti-L. donovani and anti-T. cruzi activity were tested, as well as the inhibition of Fe-SOD enzymes. It was found that some of them exhibited quite relevant values indicative of being worthy of future more detailed studies, as most of them showed activity to more than only one parasite species, especially compound 3 c was active for the three studied Leishmania species and also for T. cruzi, which is a very interesting trait as it covers a wide spectrum.


Assuntos
Imidazóis/farmacologia , Ftalazinas/farmacologia , Piridazinas/farmacologia , Tripanossomicidas/farmacologia , Animais , Chlorocebus aethiops , Imidazóis/síntese química , Imidazóis/toxicidade , Leishmania braziliensis/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Ftalazinas/síntese química , Ftalazinas/toxicidade , Piridazinas/síntese química , Piridazinas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
20.
ACS Appl Mater Interfaces ; 13(41): 48433-48448, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613687

RESUMO

The excessive colonization of Propionibacterium acnes (P. acnes) is responsible for the genesis of acne vulgaris, a common inflammatory disease of skin. However, the conventional anti-acne therapies are always limited by various side effects, drug resistance, and poor skin permeability. Microneedles (MNs) are emerging topical drug delivery systems capable of noninvasively breaking through the skin stratum corneum barrier to efficiently enhance the transdermal drug penetration. Herein, MNs loaded with intelligent pH-sensitive nanoplatforms were constructed for amplified chemo-photodynamic therapy against acne vulgaris, jointly exerting antimicrobial and anti-inflammatory effects. The photosensitizer indocyanine green (ICG) was loaded into the zeolitic imidazolate framework-8 (ZIF-8) to improve its photostability, which would be triggered by 808 nm laser irradiation to generate cytotoxic reactive oxygen species (ROS) to result in oxidative damage and disturbed metabolic activities of P. acnes. In addition to the efficient drug delivery, the ZIF-8 carrier could selectively degrade in response to the acidic microenvironment of acne lesions, and the released Zn2+ also exhibited a potent antimicrobial activity. The fabricated ZIF-8-ICG@MNs presented an outstanding synergistic anti-acne efficiency both in vitro and in vivo. This bioresponsive microneedle patch is expected to be readily adapted as a generalized, modular strategy for noninvasive therapeutics delivery against superficial skin diseases.


Assuntos
Acne Vulgar/tratamento farmacológico , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Imidazóis/uso terapêutico , Verde de Indocianina/uso terapêutico , Estruturas Metalorgânicas/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Acne Vulgar/patologia , Animais , Antibacterianos/química , Antibacterianos/efeitos da radiação , Antibacterianos/toxicidade , Anti-Inflamatórios/química , Anti-Inflamatórios/efeitos da radiação , Anti-Inflamatórios/toxicidade , Células HEK293 , Humanos , Imidazóis/química , Imidazóis/efeitos da radiação , Imidazóis/toxicidade , Verde de Indocianina/química , Verde de Indocianina/efeitos da radiação , Verde de Indocianina/toxicidade , Raios Infravermelhos , Masculino , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/efeitos da radiação , Estruturas Metalorgânicas/toxicidade , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade , Propionibacterium acnes/efeitos dos fármacos , Ratos , Pele/efeitos dos fármacos , Pele/patologia , Suínos , Zinco/química , Zinco/efeitos da radiação , Zinco/uso terapêutico , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...